Bioconversion of olive-mill dry residue by Fusarium lateritium and subsequent impact on its phytotoxicity.
نویسندگان
چکیده
The present study investigated the ability of the non-pathogenic fungus Fusarium lateritium to either degrade or modify aromatic substances in olive-mill dry residue (DOR) and to reduce its phytotoxicity. The 80% reduction of ethylacetate extractable phenols in DOR colonized by the fungus for 20 weeks appeared to be due to polymerization reactions of phenol molecules as suggested by mass-balance ultrafiltration and size-exclusion chromatography experiments. Several lignin-modifying oxidases, including laccase, Mn-peroxidase and Mn-inhibited peroxidase were detected in F. lateritium solid-state cultures. Tests performed with tomato seedlings in soils containing 6% (w/w) sterilized non-inoculated DOR showed that the waste was highly phytotoxic. By contract, F. lateritium growth on DOR for 20 weeks led to a complete removal of the waste toxicity and to a higher shoot dry weight of tomato plants than that obtained in the absence of DOR.
منابع مشابه
Immobilized inocula of white-rot fungi accelerate both detoxification and organic matter transformation in two-phase dry olive-mill residue.
The potential use for agronomic purposes of dry olive-mill residue (DOR), solid waste from the olive oil two-phase extraction process, might be impaired by its phytotoxicity. Although fungal treatments can detoxify DOR, long times are required for these processes. The objective of this study was to assess whether the addition of immobilized fungal inocula to DOR might improve colonization rates...
متن کاملSolid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity.
The present study mainly investigated the ability of solid-state cultures of the non-pathogenic Fusarium oxysporum strain BAFC 738 to transform aromatic components to reduce the phytotoxicity in olive-mill dry residue (DOR), the waste from the two-phase manufacturing process. Lignin, hemicellulose, fats and water-soluble extractives contents of DOR colonized by the fungus for 20 weeks were redu...
متن کاملReusing ethyl acetate and aqueous exhausted fractions of dry olive mill residue by saprobe fungi.
Some saprobe fungi (Phlebia radiata, Trametes versicolor, Coriolopsis rigida, Pycnoporus cinnabarinus, Fomes sclerodermus or Pleurotus pulmonarius) were able to bioconvert the ethyl acetate fraction (DEAF) and the corresponding aqueous exhausted fraction (EAF) of dry olive mill residue (DOR), reducing their phytotoxicity on Lepidium sativum seeds. Large amount of hydroxytyrosol together with ot...
متن کاملDry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi
We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with ...
متن کاملReduced dry olive residue phytotoxicity in the field by the combination of physical and biological treatments
Olive oil extraction generates large amounts of olive mill residues (DOR) which may be used as organic fertilizer. The influence of a combination of physical fractionation and saprobe fungal incubation on the phytotoxicity of DOR was studied. The physical fractions of DOR, obtained following extraction using ethyl acetate (EDOR) and water (ADOR) were less phytotoxic than DOR with respect to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 60 10 شماره
صفحات -
تاریخ انتشار 2005